Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhao-Peng Deng, ${ }^{a}$ Shan Gao ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *

${ }^{\text {a }}$ College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080,
People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.029$
$w R$ factor $=0.080$
Data-to-parameter ratio $=13.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

Hexaaquacobalt(II) bis(4-formylbenzoate) dihydrate

The crystal structure of the title compound, $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$ $\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, consists of octahedral $\mathrm{Co}^{\text {II }}$ complex cations that interact with the anions and uncoordinated water molecules, forming a tightly held, hydrogen-bonded layer. The $\mathrm{Co}^{\text {II }}$ complex cation lies on a special position of site symmetry $\overline{1}$.

Comment

The known transition metal derivatives of 4-formylbenzoic acid are water-coordinated compounds showing covalent metal-carboxylate bonds, for example the nickel(II) (Deng et al., 2006a) and copper(II) (Deng et al., 2006b) derivatives. However, the cobalt(II) derivative does not have this feature; the title compound (I) has a hexaaquacobalt cation (Table 1), and its charge is balanced by two uncoordinated 4 -formylbenzoate ions. There are one cation and two anions in the asymmetric unit along with two uncoordinated water molecules (Fig. 1). These are linked by hydrogen bonds (Table 2) into a layer structure. The $\mathrm{Co}^{\mathrm{II}}$ complex cation lies on a special position of site symmetry $\overline{1}$.

Experimental

Cobalt diacetate trihydrate $(0.116 \mathrm{~g}, 0.5 \mathrm{mmol})$ was added to an aqueous solution (20 ml) of 4 -formylbenzoic acid ($0.15 \mathrm{~g}, 1 \mathrm{mmol}$). Sodium hydroxide solution was added to obtain a pH 5 . The filtered solution was allowed to stand for a few days for the pink prismatic crystals to separate. Elemental analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{CoO}_{14}$: C 38.33 , H 5.23\%; found: C 38.31 , H 5.24%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$V=538.20(5) \AA^{3}$
$M_{r}=501.30$	$Z=1$
Triclinic, $P \overline{1}$	$D_{x}=1.547 \mathrm{Mg} \mathrm{m}^{-3}$
$a=6.3470(3) \AA$	Mo $K \alpha$ radiation
$b=7.4194(4) \AA$	$\mu=0.87 \mathrm{~mm}^{-1}$
$c=12.5041(7) \AA$	$T=295(2) \mathrm{K}$
$\alpha=92.353(2)^{\circ}$	Prism, pink
$\beta=90.029(3)^{\circ}$	$0.36 \times 0.28 \times 0.18 \mathrm{~mm}$
$\gamma=113.801(6)^{\circ}$	

Received 6 November 2006 Accepted 12 November 2006

Data collection

Rigaku RAXIS-RAPID IP
diffractometer
ω scans
Absorption correction: multi-scan
$\quad A B S C O R$ (Higashi, 1995)
$T_{\min }=0.614, T_{\max }=0.860$

5333 measured reflections
2451 independent reflections 2325 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$

$$
S=1.00
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0485 P)^{2}\right. \\
& \quad+0.2223 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.55 \text { e } \AA^{-3}
\end{aligned}
$$

2451 reflections
187 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 1
Displacement ellipsoid plot of the unit-cell contents. Displacement ellipsoids are drawn at the 70% probability level, and H atoms are shown as spheres of arbitrary radii. Only one disorder component is shown. [Symmetry code: (i) $1-x, 1-y, 1-z$.]

Carbon-bound H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}$ $0.93 \AA$) and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The water H atoms were located in a difference Fourier map, and were refined with a distance restraint of $\mathrm{O}-\mathrm{H} 0.85$ (1) \AA; their displacement parameters were freely refined.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2006).

We thank the Heilongjiang Province Natural Science Foundation (No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054 G036) and the University of Malaya for supporting this study.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Deng, Z.-P., Gao, S. \& Ng, S. W. (2006a). Acta Cryst. E62, m2904-m2905. Deng, Z.-P., Gao, S. \& Ng, S. W. (2006b). Acta Cryst. E62, m2906-m2907. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc. The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Westrip, S. P. (2006). publCIF. In preparation.

